Make your own free website on
Home | NASA | Missions | Solar System | Sun | Mercury | Venus | Earth | Mars | Jupiter | Saturn | Uranus | Neptune | Pluto | 2003UB313 | Black Holes | Stars | Comets | Red Giants | White Dwarfs | Black Dwarfs | Red Dwarfs | Brown Dwarfs | Galaxies | Milky Way | Dwarf Galaxy | Elliptical Galaxy | Active Galaxy | Ring Galaxy | Spiral Galaxy | Starburst Galaxy | Seyfert Galaxy | Lenticular Galaxy | Irregular Galaxy | Dark Matter | Dark Energy | Theories | Universe | Redshift | Blueshift | Area 51 | UFOs | M.I.B. | Photos | Space Games

Justin's Astronomy

Seyfert Galaxy

Seyfert galaxies are spiral or irregular galaxies containing an extremely bright nucleus, most likely caused by a supermassive black hole, that can sometimes outshine the surrounding galaxy. The light from the central nucleus varies in less than a year, which implies that the emitting region must be less than one light year across. They are named after the astronomer Carl Seyfert, who studied them extensively in the 1940s. They are a subclass of active galactic nuclei.

The Circinus Galaxy, a Seyfert Type 2 spiral galaxy.
The Circinus Galaxy, a Seyfert Type 2 spiral galaxy.

Seyfert galaxies are characterized by extremely bright nuclei, and spectra which have very bright emission lines of hydrogen, helium, nitrogen, and oxygen. These emission lines exhibit strong Doppler broadening, which implies velocities from 500 to 4000 km/s, and are believed to originate near an accretion disk surrounding the central black hole.

These emission lines may come from the surface of the accretion disk itself, or may come from clouds of gas illuminated by the central engine in an ionization cone. The exact geometry of the emitting region is difficult to determine due to poor resolution. However, each part of the accretion disk has a different velocity relative to our line of sight, and the faster the gas is rotating around the black hole, the broader the line will be. Similarly, an illuminated disk wind also has a position-dependent velocity.

The narrow lines are believed to originate from the outer part of the AGN where velocities are lower, while the broad lines originate closer to the black hole. This is confirmed by the fact that the narrow lines do not vary detectably, which implies that the emitting region is large, contrary to the broad lines which can vary on relatively short timescales. Reverberation mapping is a technique which uses this variability to try to determine the location and morphology of the emitting region.

Seyfert galaxies also show strong emission in the radio, infrared, ultraviolet, and X-ray parts of the spectrum. The radio emission is believed to be synchrotron emission from the jet. The infrared emission is due to radiation in other bands being reprocessed by dust near the nucleus. The highest energy photons are believed to be created by inverse compton scattering by a high temperature corona near the black hole.

Seyferts were first classified as Type 1 or 2, depending upon whether the spectra show both narrow and broad emission lines, or only narrow lines. They are now given a fractional classification depending upon the relative strengths of the narrow and broad components (e.g. Type 1.5 or Type 1.9). The narrow and broad components are believed to both originate from the accretion disk, but in Type 2 Seyferts it is believed that the broad component is obscured by dust and/or by our viewing angle on the galaxy. In some Type 2 Seyfert galaxies, the broad component can be observed in polarized light; it is believed that light from the broad-line region is scattered by a hot, gaseous halo surrounding the nucleus, allowing us to view it indirectly. This effect was first discovered by Antonucci and Miller in the Type 2 Seyfert NGC 1068.

Enter first column content here

Enter second column content here

Enter supporting content here